Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction.

نویسندگان

  • Qiang Wei
  • Elaine K Hebda-Bauer
  • Amy Pletsch
  • Jie Luo
  • Mary T Hoversten
  • Andrew J Osetek
  • Simon J Evans
  • Stanley J Watson
  • Audrey F Seasholtz
  • Huda Akil
چکیده

Repeated stress enhances vulnerability to neural dysfunction that is cumulative over the course of the lifespan. This dysfunction contributes to cognitive deficits observed during aging. In addition, aging is associated with dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, leading to a delayed termination of the stress response. This delay, in turn, increases exposure to glucocorticoids and exacerbates the likelihood of neural damage. Here we asked whether similar effects could emerge at an early age as a result of genetic variations in the level or function of the brain glucocorticoid receptor (GR). We investigated the effect of forebrain-specific overexpression of GR on LHPA axis activity. Transgenic mice with GR overexpression in forebrain (GRov) display normal basal circulating adrenocorticotropic hormone and corticosterone levels. However, young GRov mice exhibit a number of LHPA alterations, including a blunted initial response to acute restraint stress followed by a delayed turn-off of the stress response. This deficit in negative feedback is paradoxical in the face of elevated GR levels, resembles the stress response in aged animals, and continues to worsen as GRov mice age. The neuroendocrine dysregulation in young GRov mice is coupled with a mild cognitive deficit, also consistent with the accelerated aging hypothesis. The molecular basis of this phenotype was examined using microarray analysis of the hippocampus, which revealed a broad downregulation of glutamate receptor signaling in GRov mice. Thus, even in the absence of chronic stress, elevation of GR gene expression can lead to an increased allostatic load and result in an "aging-like" phenotype in young animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability.

The molecular mechanisms that control the range and stability of emotions are unknown, yet this knowledge is critical for understanding mood disorders, especially bipolar illness. Here, we show that the glucocorticoid receptor (GR) modulates these features of emotional responsiveness. We generated transgenic mice overexpressing GR specifically in forebrain. These mice display a significant incr...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer's disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, th...

متن کامل

The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function

Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticoster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 33  شماره 

صفحات  -

تاریخ انتشار 2007